
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric 
Administration
National Marine Fisheries Service
Alaska Fisheries Science Center

2

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric 
Administration
National Marine Fisheries Service
Alaska Fisheries Science Center

October 2020

NOAA Technical Memorandum NMFS-AFSC-412

INSTINCT: Infrastructure  
for Noise and Soundscape 
Tolerant Investigation of 
Nonspecific Call Types

D. Woodrich and C. Berchok



The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical 
Memorandum series to issue informal scientific and technical publications when complete formal 
review and editorial processing are not appropriate or feasible. Documents within this series reflect 
sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues 
the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-
NWFSC series is currently used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Woodrich, D., and C. Berchok. 2020. INSTINCT: Infrastructure for Noise and Soundscape Tolerant 
Investigation of Nonspecific Call Types. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-412, 
58 p.

This document is available online at:  
Document available: https://repository.library.noaa.gov/welcome

Reference in this document to trade names does not imply endorsement 
by the National Marine Fisheries Service, NOAA. 

https://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-398.pdf 


INSTINCT: Infrastructure  
for Noise and Soundscape 
Tolerant Investigation of 
Nonspecific Call Types
D. Woodrich1 and C. Berchok2

1Cooperative Institute for Climate, Ocean and Ecosystem Studies (CICOES) 
University of Washington
3737 Brooklyn Ave NE
Seattle WA 98195

2Marine Mammal Laboratory
Alaska Fisheries Science Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
7600 Sand Point Way NE
Seattle, WA 98115

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Alaska Fisheries Science Center 

NOAA Techncial Memorandum NOAA-TM-AFSC-412

October 2020





Executive Summary 

The Cetacean Assessment and Ecology Program (CAEP) passive acoustics group of the 

Alaska Fisheries Science Center’s (AFSC) Marine Mammal Laboratory (MML) analyzes passive 

acoustic data for the presence of cetaceans in Alaska waters. This analysis has historically been 

conducted manually, in large part due to the complexity of the calling repertoire of many 

cetacean species and tendency of high overlap of call types. Additionally, existing autodetection 

approaches have also performed poorly on simpler problems in our data due to high prevalence 

of recorder self-noise. Manual analysis protocol allows for the determination of binary species 

presence in several minute bins, allowing for efficient multi-species analysis at the expense of 

detail on call patterning and density. Extraction of individual calls requires additional fine-scale 

and labor-intensive processing and analysis. The custom software INSTINCT (Infrastructure for 

Noise and Soundscape Tolerant Investigation of Nonspecific Call Types) was developed in-house 

as a tool to extract individual calls of interest quickly and efficiently. It has been further 

developed to serve as a call type detector which can be applied to large datasets for a variety of 

applications.  

INSTINCT is a generalized detection and classification system that has the novel property 

among mature software to train a classifier not only from positive exemplars of the signals of 

interest, but additionally from undefined negative exemplars specific to the system. Domain-

specific differences in detectors generally restrict out of the box effectiveness: to address this, 

INSTINCT provides the tools to easily train a custom classifier using time-frequency boxes from 

real data containing exemplars and importantly, co-occurring noise events that resemble 

signals from the domain. As a result the domain is defined from the data provided, and wider 

generalization is possible with increased diversity of training data. This approach allows for 

transferability to different noise regimes and soundscapes to allow for successful deployment in 

dynamic environments.  

INSTINCT detectors have introduced a new possibility for the MML to analyze cetacean 

acoustic behavior on call level data. This technical report demonstrates the use of INSTINCT in 
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developing detectors for five different calls. Two of these calls were deployed to assess fin 

whale occurrence and call density on a large scale. INSTINCT detectors were created for 1) 

North Pacific right whale (Eubalaena japonica) upcalls (code: RW); 2) North Pacific right whale 

gunshots (GS); 3) minke whale (Balaenoptera acutorostrata) boing calls (BN); 4) fin whale  

(Balaenoptera physalus) C calls (FN); and (5) backbeat calls (BB). The average precision (a 

statistic for total performance) for each INSTINCT detector presented are as follows: RW 

(0.82), GS (0.76), BN (0.88), FN (0.66), and BB (0.72). The FD workflow (FN & BB composite) 

demonstrated the ability to calibrate with results from manual analysis over eight test 

moorings (R2 = 0.98, p < 0.01). More detailed performance metrics, design and tuning 

considerations, and strategies for implementation are reported for each INSTINCT detector, 

as well as future directions for continued development and application of the technology on 

U.S. Arctic data.    
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Introduction 

The U.S. Arctic and subarctic are home to a wide variety of endangered marine mammal 

species (Moore et al. 2000, Moore et al. 2002, Clarke et al. 2013, Hanney et al. 2013, Vate 

Brattström et al. 2019). These migratory animals move with the yearly formation and retreat of 

sea ice, covering large distances across a remote, harsh environment that make monitoring via 

visual means difficult and cost-prohibitive. Passive acoustic monitoring (PAM) is a low-cost 

method used to monitor marine mammal species via long-term data collection of their calling 

activity (Van Parijs et al. 2009). The Alaska Fisheries Science Center’s (AFSC) Marine Mammal 

Laboratory (MML) Cetacean Assessment and Ecology Program (CAEP) passive acoustics group 

has maintained a long-term PAM array from the southern Bering Sea through the high Arctic 

since the late 2000s, generating tens of terabytes of passive acoustic recordings. These data 

have historically been analyzed manually in three separate frequency bands: low (0-250 Hz), 

mid (0-800 Hz) and high (0-Nyquist), using the custom sound analysis program SoundChecker 

(Wright et al. 2018, Vate Brattström et al. 2019). These bands split up monitoring effort based 

on typical species calling range, which allows an analyst to review for many species at once. 

Therefore, this bundled effort represents a major speedup over manual analysis of individual 

species presence. The expected SoundChecker analysis rate for a given mooring deployment 

was approximately three months of analyst time per year of recordings for all three frequency 

bands combined on an average mooring deployment. 

Manual analysis has been a reliable and successful method for analyzing complex and 

dynamic acoustic data for multiple species presence (Wright et al. 2018, Vate Brattström et al. 

2019). To enable extensive coverage of the data, a binned analysis protocol was designed to 

establish presence in each frequency band per several minute bin. This low-resolution labeling 

of bins provides much needed year-round data on the presence and timing of multiple marine 

mammal species (as well as environmental and anthropogenic noise sources) at once, but is not 

well-suited for questions that rely on finer details such as call characteristics, patterning, and 

density.  



Automated detection and classification methods were pursued to obtain higher 

resolution results and to provide a more efficient tool for analysis of individual call types. The 

primary objectives for this project were to develop workflows that could streamline detection 

of certain species and reduce the manual boxing effort needed for analysis of calling behavior. 

An existing detection and classification system, the Low Frequency Detection and Classification 

System (LFDCS) (Baumgartner and Mussoline 2011), was found to underperform when applied 

to these arctic datasets (Vate Brattström et al. 2019). Without a viable alternative to the LFDCS 

at the time, the software INSTINCT was developed in-house to better account for the high 

degree of noise present on our recorder moorings (including high self-noise from the trawl 

reinforced mooring construction) deployed in the Arctic. INSTINCT is designed to distinguish 

signal of interest (SOI) and these common noise events. Many approaches have demonstrated 

success using a binary classifier with a negative class to define signal from noise events similar 

to the signal (Mellinger 2004, Gillespie 2004, Esfahanian et al. 2017). Although these methods 

were promising, they were not made available as mature and generalized software systems. 

The LFDCS, a commonly used system, is not structured to classify SOI against noise events such 

as self-noise, instead classifying signal via distance to ‘territories’ of tonal call types 

(Baumgartner and Mussoline 2011). Noise events could be included as a separate positive class 

in the LFDCS and negatives could be selected and added manually as exemplars in rounds 

through hard negative training (iterative retraining with high confidence false positives). 

However, this would be time consuming and not well supported by the software. In addition, 

the development of the LFDCS has trended towards a low-power solution for real time 

detection of various call types instead of a system optimized to the needs of archival analysis 

(Baumgartner et al. 2013, Baumgartner et al. 2017). Software systems Raven, PAMGUARD, and 

ISHMAEL can be used for detection, but lack built in generalized classifiers to discriminate noise 

events from user defined SOI (Bioacoustics Research Program 2017, Gillespie et al. 2009, 

Mellinger 2001). PAMGuard has the module Real-time Odontocete Call Classification Algorithm 

(ROCCA), which uses the PAMGuard whistle and moan detector for automated detection and 

classification of delphinid whistles. However, ROCCA did not appear to have a retraining 
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capability for noise events in the classification stage, and classification design appears to be 

specific to delphinid whistles. 

Although INSTINCT uses a generalized classification infrastructure to classify noise from 

SOI, it is still vulnerable to reduced performance when applied across time, location, and 

instrument differences. This problem is known as domain adaptation and is ubiquitous in 

algorithmic detection and classification (Beery et al. 2018). To address this issue, INSTINCT 

users characterize the domain of their system by providing segments of real data with hand- 

labeled SOI. INSTINCT then employs a binary random forest classifier to train probabilistic 

models based on these labels. Random forest classification performs well on these often 

polymorphic negative classes (Ross and Allen 2014), and also is considered insensitive to 

hyperparameter tuning (Liaw and Wiener 2002) allowing the classifier infrastructure to be 

transferable across various call types and their competing noise events. This classifier design 

has demonstrated good performance in various applications, including to classify polymorphic 

avian ‘night calls’ against false positives within single location-years (Ross and Allen 2014) and 

to classify minke whale pulse train positive detections against false positives in Stellwagen Bank 

(Popescu et al. 2013). INSTINCT has similarities to the two-stage technique and image analysis 

protocol of Esfahanian et al. (2017), which incorporates an initial computationally light 

detection round based on spectrogram features prior to the more computationally heavy 

features extraction.  

Additionally, a modification on the traditional learning curve was designed to better 

illustrate the effect of classifier performance by the additional data segments for two INSTINCT 

detectors. As the data are not centrally located, pure random sampling was not feasible, so the 

common approach of increasing the size of the training set to track improvement in 

performance was not practical in our sampling design. A learning curve was designed to 

simulate the average effect on performance of adding an additional random data segment at 

each step. This approach used data segments as the smallest sampled unit, and due to high 

variance in classifier performance, the sampling was repeated over many trials to produce an 

average effect. Results were interpreted graphically by observing for stability in performance 

mean and variance.  
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Presented here is the successful implementation of INSTINCT, which has enabled 

detailed study of call behavior on small and large scales and unlocked massive new potential for 

analysis in the U.S. Arctic region, and potentially worldwide. Performance metrics, analysis 

considerations, and case studies from five cetacean call type detectors developed with 

INSTINCT are described. Future potential and considerations for the application of INSTINCT on 

new and challenging problems in cetacean detection and behavior analysis are discussed.    

Methods 

Detector Function 

INSTINCT detectors work in an efficient two-stage process: an initial, computationally 

light detection stage limits the breadth of a second more computationally heavy classifier stage. 

Together, these stages allow the overall detector to be both computationally efficient while 

achieving high performance. The workflow to create a detector with INSTINCT can be grouped 

into three main phases: Detector design, training, and deployment. Detector design is a manual 

process (Fig. 1). First, ground truth data for later training is collected from sections of the data 

known to contain the call type, and hand annotated for positive SOI present in the ground 

truth. This sampling of data in chunks, as opposed more common random sampling, is 

necessary as the data are not already annotated on the call type resolution and data must be 

reviewed consecutively to ensure accuracy of annotations. These sections of ground truth data 

are here referred to as ‘data segments’. Ground truth data should be selected by an analyst 

very familiar with the SOI and the system in which it occurs, and the ground truth dataset 

should be a minimal but comprehensive sampling of the expected variation in call 

characteristics and acoustic conditions. When available, unique data segments (data segments 

that are extracted from different mooring deployments) should be incorporated from a wide 

range of locations and years to account for spatiotemporal variability. For call types where the 

available data are sparse, non-unique (i.e., taken from different sections of the same mooring 

deployment) data segments can be chosen to bolster the training data size. These annotated 

ground truth data segments will be used in the training process, both to automatically assign 

labels to event detector outputs and produce performance statistics. Next, the event detection 
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protocol is created: this can be non-event specific if desired by using a single band limiting 

energy detector (BLED), or tailored specifically to the SOI using several BLEDs (such as the event 

detection design in Thode et al. 2012) and a custom algorithm to combine BLED 

‘minidetections’ (Appendix section A). These BLEDs are implemented in Raven 1.5, enabled by 

the R package Rraven (Araya-Salas 2017). Also during this phase, a threshold is defined which 

indicates the percentage of true positive detections to be retained from the end of the event 

detection stage through the classifier stage.  

The training phase is an automated process which outputs a trained model, detector 

outputs on the ground truth data, and produces performance statistics (Fig. 2). The event 

detector created in the design phase is applied to the ground truth data, and labeling of 

detections is performed based on comparison with the ground truth annotations. These labeled 

detections then undergo feature extraction, where various measurements are made in the time 

and frequency domains of the signal. Detections that have NA or infinite values for any 

measurement are removed from the dataset due to later incompatibility with the machine 

learning model. Binary random forest-based models are generated using R package 

‘randomForest’ (Liaw and Weiner 2002). These models are generated with different sampling of 

the data, allowing for a cross-validated probability estimate for each detection (Appendix 

section B). These models are also retained for use in the deployment phase. The user-defined 

threshold is applied to the resulting probability estimates, and the remaining detections are 

retained as the final output. Various performance statistics are generated throughout this 

process, allowing for informed modification of detector design if performance is deemed 

inadequate for the deployment needs of the particular study.  

The deployment phase is an automated process that can act on novel data. When 

acoustic data are presented, this phase applies and feeds the outputs of the event detection 

stage into the classifier stage to produce final detections (Fig. 3). Performance at this stage is 

best estimated by the statistics produced during training, although the common heterogeneity 

of acoustic data can make these estimates vary based on the contents of novel data presented. 
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Detector performance for a given probability threshold is assessed via automatically generated 

statistics such as precision, recall, multibox %, and overbox %. This type of statistic is here 

referred to as ‘specification dependent’ statistics (Table 1). Total detector performance can be 

evaluated with measurements of performance curves that compare tradeoffs based on a 

dynamic probability threshold (i.e., Precision-Recall curve (PR curve) and true positive rate-false 

positive rate curve (ROC curve)). Relevant statistics of performance curves include Area Under 

the Curve (AUC) score (ROC curve), average precision (PR curve), minimum distance recall, and 

minimum distance precision. These are ‘specification independent’ statistics which are not 

dependent on a probability threshold (Table 1). Recall is a measure of how effective the 

detector is at pulling out all instances of desired signal. Precision is a measure of the accuracy of 

returned detections. Recall and precision are calculated for the defined event detector and 

classifier stages, and for both stages combined (overall). Note that the binary classification 

operation functions as a part of the larger detection method, so performance statistics referring 

to the classifier stage refer to the effect of the binary classifier on the pool of detections 

returned from the defined event detection stage. Minimum distance recall and precision refer 

to the point along the PR curve lying closest to the perfect detector (recall = 1, precision = 1) 

and approximate an optimal threshold for maximum detector performance ignoring the 

application considerations of thresholding differences (Habibzadeh et al. 2016). Note that 

optimality here is used as a descriptor of model behavior and does not suggest appropriate 

tuning of the model which is ultimately determined by analysis goals and real world 

implications of misclassification (Perkins and Schisterman 2006). AUC is the value of the integral 

of the receiver operating characteristic (ROC) curve, and average precision is the value of the 

integral of the PR curve. These statistics indicate the total performance power of the detector, 

with better performing detectors approaching a perfect score of one. Multibox % and overbox 

% are custom statistics (defined in this report) designed to quantify the rate at which multiple 

returned detections are contained within a single ground truth detection (multibox %) and the 

rate at which multiple ground truth detections are contained within a single returned detection 

(overbox %). This allows for an assessment of the behavior of how true positive detections are 

lining up with the ground truth boxes. Statistics are calculated ‘overall’, where datasets with 
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more labels have heavier weights in any calculation, and also ‘by-data segment’, meaning that 

statistics are calculated individually for each data segment, and then averaged to equally 

weight the data segments regardless of size. The ‘by-data segment’ statistics help indicate 

variability of classifier performance across the individual data segments. Detector performance 

can also be evaluated qualitatively by analyzing returned detections, missed detections, and 

their component minidetections in Raven 1.5 on a per-detection level. Feature importance can 

also be compared within detectors using relative mean decrease in Gini coefficient (related to 

the ability of a variable to split mixed labels into pure categories) which allows for qualitative 

analysis of the classifier function (Ross and Allen 2014). As an aggregate, these statistics and 

assessment techniques are used to adjust BLED, defined event detector, and classifier 

parameters, which are compared over many iterations to optimize performance for the given 

analysis workflow. Given that the number of potential parameter combinations is 

computationally prohibitive to automated tuning, parameter adjustment is performed manually 

for a quantity of iterations needed to produce sufficient detector performance for the needs of 

the analysis (Mellinger 2004).  

Compute 

INSTINCT uses parallelization at different stages throughout the script to increase 

Central Processing Unit (CPU) utilization and decrease computation time. Parallelization is 

critical for time efficient analysis of large acoustic datasets, and when configured efficiently, can 

represent substantial reduction of processing time (Dugan et al. 2014). The degree of 

parallelization for INSTINCT is specified by the user, and is dependent on the number of CPU 

cores and memory availability for the machine. Parallelization can be utilized by INSTINCT in 

four separate stages: energy detection, defined event detector algorithm application, feature 

extraction, and model generation. Each of these stages has unique CPU and memory demands. 

Energy detection is characterized by low CPU usage and high memory demand, so can be 

efficiently parallelized with a high memory machine. Defined event detector algorithm 

application uses CPU efficiently, so this stage benefits from increased CPU capability, but also 

requires high memory due to the large datasets being processed. Feature extraction uses CPU 
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efficiently, and does not require high memory, so machines with high CPU capability can 

process this efficiently. Model generation is memory limited, so high memory machines will 

perform efficiently on this stage.  

Given the differences in CPU or memory limitation for different parallel processes in 

INSTINCT (Fig. 4), computers which are low in CPU or memory will bottleneck at different 

stages. That said, the CPU limited stage of feature extraction is generally the bottleneck for 

computation time, meaning that higher CPU machines will have faster processing with 

INSTINCT. Also of importance is that large datasets can overwhelm the memory of smaller 

machines during defined event detection algorithm application, so chunking datasets into 

smaller components and running them individually may be necessary on low memory 

machines. Best performance will be achieved on high CPU and high memory capability 

machines.  

Detectors 

The flexibility of INSTINCT was demonstrated in analyses of several call types. As each 

analysis has different considerations depending on the purpose of the investigation (similar to 

Davis et al. 2017), call type frequency and behavior, species rarity, and prevalence of 

competing noise events against the call type, detector design and parameters were adjusted 

for the most appropriate optimization. For example, behavior analysis of a rare call type would 

necessitate extracting the maximum amount of calls at the expense of lower detector precision 

and more returned false positives. This would require the detector tuning for high recall and 

low precision and a stringent verification protocol to eliminate false positive detections. This is 

necessary, as the inclusion of false positives for a rare call type even in small numbers could 

misinform the findings of the analysis. This type of analysis is defined as an analysis tuned 

towards high recall. High recall analysis is particularly useful in situations where maximizing the 

number of calls returned is preferable, even at the expense of having to sift through a greater 

number of false positive detections. Alternatively, an investigation of a frequently produced call 

type may allow for lower recall and still capture species presence reliably at a daily time scale. 

In these situations, higher precision is generally required to reduce time spent on individual call 
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verification due to the very high quantity of returned detections. This is defined as an analysis 

tuned to high precision. Relationships between call detection rates and analyst determined 

presence in a high precision analysis can be modeled to predict presence based on count data 

(Baumgartner et al. 2019, Davis et al. 2020). Detectors can additionally be optimized 

somewhere between high recall and high precision to best balance the needs of the analysis.  

We present the application of INSTINCT in the design of five call type detectors: North 

Pacific right whale (Eubalaena japonica; hereafter NPRW) upcalls (RW), NPRW gunshots (GS), 

minke whale (Balaenoptera acutorostrata) boing calls (BN), fin whale (B. physalus) C (FN) and 

backbeat (BB) calls combined into a larger detection workflow (FD). We demonstrate the 

adaptability of these INSTINCT detectors to analysis goals with a wide range of needs for design 

and specification. A case study for the FD data analysis workflow is presented to demonstrate 

the application of INSTINCT to large-scale detection challenges.  

North Pacific right whale (RW and GS) 

The eastern population of the NPRW is critically endangered with poorly understood 

migratory patterns (Wright et al. 2018). Due to logistical and funding constraints restricting 

vessel-based surveys, PAM has been effectively applied to collect data on their year-long 

presence in the Bering Sea. NPRW primarily make two stereotyped calls: a tonal frequency-

modulated (FM) upsweep known as the ‘upcall’, and a high energy impulsive call known as the 

‘gunshot’ (Crance et al. 2017, McDonald and Moore 2002). Although these call types are 

indicative of NPRW presence, neither are specific to NPRW as defined by measurable attributes 

of any individual call. Upcalls are similar to other common tonal upsweeps produced by 

humpback and bowhead whales. Gunshots are also produced by bowhead whales (Würsig and 

Clark 1993) and can sometimes resemble other impulsive signals (Crance et al. 2017). These 

ambiguities create a reliance on contextual information for correct classification of these calls 

to NPRW, which has been previously addressed by SoundChecker manual analysis protocol for 

these call types. 
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Although manual analysis enables the use of contextual information to classify call types 

in complex situations, the binned presence procedure does not allow for study of call rates and 

abundance which requires individual call counts. To improve data resolution for finer-scale 

behavioral analysis of NPRW, INSTINCT detectors for the NPRW upcall (coded RW) and NPRW 

gunshot (coded GS) were designed to extract calls of these types from manually analyzed data. 

Only subsetted data which contained the specific call type (as well as sounds unclassified by 

SoundChecker) were used to design and train each detector, eliminating interspecific 

interference. Due to the limited sampling of the training data, these detectors were designed 

with the intended use for call extraction in subsetted data (i.e., not optimized for full mooring 

analysis). The ground truth data for each of these detectors was composed of data segments 

from various years and seasons of Bering Sea mooring deployments known to contain 

exclusively upcalls and exclusively gunshots, respectively (see Results for details).  For each call 

type detector, positive calls in each data segment were reviewed and hand labeled, defined 

event detectors were designed for initial detection based on the FM characteristics (Appendix 

section A), and labeled positives and negatives were assembled to train each classifier. The RW 

defined event detector was composed of 18 BLEDs with frequency bandwidths of 20Hz, 

overlapping by 10Hz, and covering a total frequency range of 60Hz to 250Hz. Each BLED shared 

identical parameters aside from frequency. The GS defined event detector was composed of 21 

BLEDs with variable frequency bandwidth and overlap covering a total frequency range of 65Hz 

to 850Hz. BLED parameters were variable over the frequency range since propagation and 

noise effects were frequency dependent. 

Minke boing calls (BN) 

A minke whale boing INSTINCT detector (coded BN) was developed to automate the 

pulse repetition rate measurement to help determine the population identity of minke whales 

in the Bering Strait and Chukchi Sea (Delarue et al. 2012). Data that were manually labeled with 

SoundChecker to contain only boing calls and unclassified noise were concatenated into ground 

truth data segments (see Results for details). A defined event detector was designed to extract 

these calls based on the presence of harmonics creating ‘stacks’ of detections over a frequency 
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range (Appendix section A). The BN defined event detector was composed of 14 BLEDs with 

bandwidths of 100 Hz, overlapping by 50 Hz, and covering a total frequency range of 1,000 Hz 

to 1,750 Hz. Each BLED shared identical parameters aside from frequency. Given the original 

purpose of generating pulse repetition rate measurements, the detector was optimized 

towards high precision.  

Fin whale (FD) 

Two INSTINCT detectors (coded FN and BB) were developed to identify the two most 

common call types of Pacific fin whales: ‘C’ (also known as 40-20 Hz downsweeps, or ‘classic’) 

call (FN) and ‘backbeats’ (also known as ‘B’ calls) (BB) (Archer et al. 2018). These call types 

were chosen as the best proxies to match the fin whale class as identified by manual analysis, 

although other fin whale call types besides these two most common were included in the 

manual analysis. Data segments were chosen from data manually analyzed in SoundChecker to 

contain fin whale calls of any type. Positive calls from data segments across years and a broad 

spatial range were time-frequency boxed to create the ground truth data (see Results for 

details). Classifier negatives for each detector were composed of miscellaneous abiotic and 

possible biotic noise not considered to be fin positives. This unfiltered data segment 

configuration allowed for applicability of both detectors to full datasets. The FN detector 

featured a defined event detector composed of 14 BLEDs with frequency bandwidths of 4Hz 

and overlapping by 2Hz, covering a total frequency range of 16Hz to 46Hz. Each BLED shared 

identical parameters aside from frequency range. The BB detector was a single event detector 

due variable FM characteristics observed in the call type which is not compatible with defined 

event detection. Fin whale C calls and backbeats are often very prevalent in the data during 

periods of animal presence (Archer et al. 2018), so a high precision approach was implemented 

to take advantage of this repeatability and ensure good recall within larger time bins. This high 

precision approach was supplemented with a calibration stage to best tune the sensitivity of 

the detector to match fully manual approaches, with final manual verification of presence 

peaks reduce correlated false positive detections and confirm bouts of positive detections. The 
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ensemble of these detectors combined with a manual verification protocol was termed the FD 

detector workflow for fin whale detection.  

The goal of the FD workflow protocol was to create a balanced detector for precision 

and recall (on the daily % presence of 5-minute bins level), which could be additionally 

manually verified to further improve confidence in results. A method was developed to best 

calibrate the performance of the three components of the protocol (FN detector, BB detector, 

and the manual verification) to manually analyzed fin whale data. The method began with 

rough optimization to enable a round of data cleaning, which helped to better support a more 

thorough optimization performed on the cleaned data (with manual verification built into the 

FD workflow, false positive peaks from noise and airguns are extracted by this verification, so 

the cleaned data are more representative of the final desired output). The FN detector and BB 

detector were independently correlated against seven and eight fully analyzed moorings, 

respectively, at sliding probability thresholds (one test mooring which had notably few C calls 

was removed from the FN comparison to improve relevance). The sliding threshold ranged from 

0.45 to 0.99 with steps of 0.1. The threshold corresponding to the highest average correlation R 

score across each mooring was used to subset the data for the verification stage. Detections, 

determined by the probability threshold value, from the FN and BB detectors were grouped 

into hourly bins, and the local minima and maxima of these hourly bins were calculated to 

determine ‘peaks’ of presence. A manual verification stage was used to exclude peaks 

composed of false positives. Once the data were verified, hourly bins which were positively 

verified for both C and backbeat calls were extracted from the cleaned data to be used for a 

more thorough round of calibration against the manually analyzed test moorings. For this 

round, the parameterization of FN and BB was performed in a simultaneous comparison to best 

match the manual analysis with their combined binning in an FD class. The probability threshold 

combinations were compared using mean correlation R scores of the FD class to the manually 

analyzed moorings on the daily % presence level (5-minute bins/day with fin whale calls 

detected). The FN and BB thresholds representing the maximum mean correlation R score were 

used for a final comparison of the test moorings, and R2 statistic, p-values, and over/under- 
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sensitivity were calculated for final determination of performance. The protocol was applied to 

the full extent of analyzed data archived by MML.  

Learning Curve 

To begin each trial, a randomly selected single ground truth data segment was used to 

generate a classifier that was applied to another randomly selected (without replacement) 

single holdout ground truth data segment to assess performance. The classifier performance 

differential (training performance - test performance) at this first step was registered and the 

holdout data segment was then incorporated into the ground truth. The model generated from 

the combined ground truth set was then tested against another random holdout ground truth 

data segment for the second step. This process was repeated for n (total data segments – 1) 

steps until all ground truth data segments were included in the training set, and trials were 

repeated to generate vectors of performance differential at each step. The mean and standard 

deviation of performance differential were calculated to indicate performance change for the 

overall process at each step. Due to high computational requirements and limited resources, 

learning curves were generated for only the RW and GS detectors. A total of 146 trials were 

conducted for the upcall learning curve and a total of 104 trials were conducted for gunshots. 

Results 

Detectors 

Detector ground truth quantity ranged from 24.6 data hours to 91.4 data hours. 

Number of ground truth unique data segments ranged from 6 to 12 (Table 2). The five INSTINCT 

detectors demonstrated variable performance depending on the design of the detector and the 

analysis specification (Table 3). The scores for each detector are as follows: RW (ROC AUC: 0.96, 

average precision: 0.82), GS (0.95, 0.76), BN (0.97, 0.88), FN (0.97, 0.66), and BB (0.97, 0.92). 
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North Pacific right whale upcalls (RW) 

The detector ground truth contained six locations throughout the Bering Sea from  

5 years of effort (Figs. 5a and b). The RW defined event detector had a recall of 0.94 and a 

precision of 0.11 (Table 4). The upcall classifier stage had an ROC AUC score of 0.96, and the 

overall detector had an average precision of 0.82 (Figs. 5c and d). The relatively higher 

minimum distance precision of 0.81 compared to the minimum distance recall of 0.73 indicates 

that the detector is more optimized for higher recall analysis. The highest ranking classifier 

features, quantified by mean decrease in Gini coefficient, suggest that several measurements of 

slope as determined by application of the Hough lines algorithm (Duda and Hart 1972) 

(Appendix section C) were the most important in the model (Fig. 5e). Different statistics of the 

Θ (meanTheta.Hough and sdTheta.Hough) and the slope (MeanSlope.Hough and 

MedSlope.Hough) of the top scoring Hough lines were the most informative features, followed 

by the score of the single highest scoring Hough line (BestScore.Hough). With a classifier recall 

set at 0.95 for a high recall analysis, the overall detector recall was 0.89 at a precision of 0.35. 

At these levels, an analyst would expect to review ~2 false positives for every 1 true positive in 

the ground truth data. Multibox % and overbox % were low for the detector, each affecting less 

than 1 in 300 detections. 

North Pacific right whale gunshots (GS) 

The detector ground truth contained four locations in the southeastern Bering Sea over 

5 years of effort (Figs. 6a and b). The GS defined event detector had a recall of 0.84 and a 

precision of 0.49 (Table 5). The gunshot classifier stage had an ROC AUC score of 0.95, and the 

overall detector had an average precision of 0.79 (Figs. 6c and d). The relatively higher 

minimum distance precision of 0.81 compared to the minimum distance recall of 0.75 indicates 

that the classifier is more optimized for higher precision analysis. Various types of 

measurements were informative to the classifier, but Hough features (Appendix section C) were 

particularly informative (Fig. 6e). The mean Θ (MeanTheta.Hough), median slope 

(MedSlope.Hough), and median y intercept (MedB.Hough) among top scoring Hough lines were 

the most informative measurements.  Among the others, the standard deviation of summed 
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pixel values of x-axis quantiles in the binary spectrogram (AreaX.std) and the standard error of 

the short-term autocorrelation values for the waveform (autoc.se) were most informative. With 

a classifier recall set at 0.95 for a high recall analysis, the overall detector recall was 0.78 at a 

precision of 0.73. At these levels, an analyst would expect to review ~1 FP for every 3 TP in the 

ground truth data. Overbox occurred in ~7% of true detections, indicating these returned 

detections each overlapped at least one independent ground truth true positive. Only ~1% of 

detections (multibox) were redundant inside the boundaries of ground truth true positives. The 

skew towards overbox % indicates the detector is more sensitive to incorrectly grouping tightly 

associated signals into single detections as opposed to incorrectly splitting more dispersed 

single signals into multiple detections.  

Minke boing calls (BN) 

The detector ground truth contained five locations in the Bering and Chukchi seas over  

7 years (Figs. 7a and b). The defined event detector had a recall of 0.91 and a precision of 0.42 

(Table 6). The boing classifier stage had an ROC AUC score of 0.97 and the overall detector had 

an average precision of 0.88 (Figs. 7c and d). The relatively higher minimum distance precision 

of 0.90 compared to the minimum distance recall of 0.83 indicates that the classifier is more 

optimal for higher precision analysis. Spectrogram features related to shape object pixel area 

and dimensions were the most informative, corresponding to all five of the most informative 

features for the classifier (Fig. 7e). Specifically, these features refer to the average frequency 

range (sFreqrange), number (sCompared), and mean pixel area (sArea) of all considered shape 

objects, the pixel area of the largest shape object (AreaMax), and the ratio of the largest shape 

object pixel area to the sum of the other considered shape objects (AreaMax.Dom). With a 

classifier recall set at 0.95 for a high precision analysis, the overall detector recall was 0.88 at a 

precision of 0.83. At these levels, an analyst would expect to review ~1 false positive for every 

four true positives in the ground truth data. Multibox % and overbox % were somewhat high 

relative to the other detectors, indicating lower returned box quality for this detector.  
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Fin whale (FD) 

Fin whale C calls (FN) 

The detector ground truth contained five locations in the Bering and Chukchi seas over 

5 years (Figs. 8a and b). The defined event detector had a recall of 0.93 and a precision of 0.13  

(Table 7). The fin whale C call classifier stage had a ROC AUC score of 0.97 and the overall 

detector had an average precision of 0.66 (Figs. 8c and d). The similar minimum distance 

precision and minimum distance recall indicates that the detector is optimized for high recall or 

high precision application. The most informative features were various statistics on Hough lines 

and slope (Appendix section C), indicating the importance of the call frequency modulation in 

classification (Fig. 8e). The slope (BestSlope.Hough) and Θ (BestTheta.Hough) of the highest 

scoring Hough line, the median Θ (MeanTheta.Hough) and number (num.Goodlines) of top 

scoring Hough lines, and the mean slope for all considered shape objects (Meanslope) were the 

most informative measurements. With a classifier recall set at 0.62 for a high precision analysis, 

the overall detector recall was 0.50 at a precision of 0.95. Overall detector recall was lower 

than the expected recall (product of each stage recall) due to many detections being discarded 

in feature extraction for returning NA or infinite values. At this precision threshold an analyst 

would review 1 false positives for each 19 true positives present. Multibox % and overbox % 

were low at ~1.5% each, but the initial BLED detector had a tendency to split up calls into 

multiple detections at a multibox of 14%.   

Fin whale backbeat calls (BB) 

The detector ground truth contained six locations in the Bering Sea, Chukchi Sea, and 

Aleutian passes over 6 years (Figs. 9a and b). The event detector had a recall of 0.80 and a 

precision of 0.28 (Table 8). The fin whale backbeat classifier stage had a ROC AUC score of 0.97, 

and the overall detector had an average precision of 0.72 (Figs. 9c and d). The relatively higher 

minimum distance precision of 0.77 compared to the minimum distance recall of 0.68 indicates 

that the classifier is more optimized for higher precision analysis. The most informative 

features were statistics on the uniformity and strength of the backbeat call (Fig. 9e). The mean 

of pixel area among all considered shape objects (sArea), the mean of the number of shape 

objects along quantiles along the y-axis (SwitchesY.mean), the maximum pixel count for the 
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largest shape object (AreaMax), the score of the single highest scoring Hough line (Appendix 

section C) (BestScore.Hough), and the mean Hough line score among all considered shape 

objects (sScore) were the most informative measurements. With a classifier recall set at 0.59 

for a high precision analysis, the overall detector recall was 0.49 at a precision of 0.97. At this 

threshold an analyst would review 1 false positive for each 32 true positives present. Multibox 

% and overbox % were low and balanced at < 1% each, suggesting boxes were encompassing 

call boundaries appropriately. 

FD calibration 

Eight test mooring deployments were used in the calibration protocol (2012 M2a, 2012 

M2b, 2012 PH1, 2013 PH1, 2012 CL1, 2013 CL1, 2012 M8, and 2018 BS4). For the data cleaning 

stage, the maximum correlation R score for unreviewed detections on all the test moorings 

were at a FN threshold of 0.95 and a BB threshold of 0.92 (for this FN comparison, 2012 M2b 

was removed from the pool due to seasonal lack of this call type, reducing the utility of this 

comparison). The FN/BB parameter combination with the maximum correlation R score mean 

on the cleaned data was a FN threshold of 0.91, and a BB threshold of 0.90. Low standard 

deviation at this parameterization indicated consistent detector behavior among the test 

moorings, supporting the choice of thresholds (Fig. 10). After another round of peak verification 

at this calibration, the combined detector outputs had an R2 of 0.98 (p < 0.01) to the test 

moorings in a combined regression (Table 9). Detector over-sensitivity (higher daily % presence 

of 5-minute bins value than the manual analysis) was more common at an overall ratio of ~4 

over-sensitive days to 3 under-sensitive days, but 2018 BS4 had the highest single mooring 

sensitivity ratio, at ~71 under-sensitive days to 1 oversensitive day. The 2012 M2a mooring had 

the highest R2 value of all test moorings at an R2 of 1.00 (Fig. 11), the 2012 CL1 mooring had the 

median R2 value of 0.97 (Fig. 12), and the 2018 BS4 mooring had the lowest R2 value of 0.89 

(Fig. 13) (Table 9). Daily % presence peaks at PH1 exhibited notable over-sensitivity annually 

(Fig. 14). The FD workflow was deployed on 216 mooring years of data, resulting in over  

8 million BB detections and 7 million FN detections. Over 122,000 detections representing call 

peaks were manually verified over the corpus. 
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Learning Curve 

The upcall learning curve showed consistent improvement in precision difference with 

the addition of data segments to the ground truth dataset. No apparent plateau was reached, 

but the curve showed diminishing returns on the third quartile (lower bound) around n = 6. The 

gunshot learning curve showed more dramatic improvement in precision difference at n = 1 

followed by gradual improvement in third quartile precision difference that appears to plateau 

around n = 5 (Fig. 15).  

Compute 

Complete retraining for each call type detector took between one to four hours on a 16 

CPU core 128 GB RAM virtual machine. INSTINCT is currently designed to run on windows OS, 

and requires a licensed copy of Raven 1.5. The FN detector had an average of 40 hours of run 

time on a full mooring deployment, and the BB detector had an average of 45 hours of run 

time.  

Discussion 

Detectors

INSTINCT was successful in enabling the development of a variety of call type detectors, 

which have allowed the AFSC MML to streamline certain analysis workflows. This technology 

emerged as the first viable solution to enable call type analyses at large scale in challenging 

U.S. Arctic datasets. The PR curve skew of the INSTINCT detectors tended to favor high 

precision analysis, due to a certain number of signals being lost during event detection due to 

time frequency masking or a low signal to noise ratio. Because of this, INSTINCT particularly 

excelled at large-scale deployment of detectors at high precision, which allowed for 

streamlined detection of call types in large datasets. However, the customizable nature of 

INSTINCT allows for its application to a wide range of analysis specifications. The ability for 

customization and the streamlined process of data labeling and detector creation has 

positioned INSTINCT as a powerful and flexible tool for high performance detection of call 

types in archival datasets.  
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The individual call outputs of INSTINCT will be valuable for further species or population 

classification, as the spacing of calls can indicate call patterns. For instance, while a single 

gunshot could be produced by a bowhead whale or NPRW, the occurrence of this signal in a 

stereotyped pattern indicates an origin from a NPRW (Crance et al. 2019). Similarly, fin whale 

notes are ubiquitous between populations, but differences in note interval and patterning can 

indicate the stock of the calling animal (Širović et al. 2017, Delarue et al. 2009). Developing 

pattern recognition techniques into mature workflows represents a promising area of future 

application for INSTINCT.  

North Pacific right whale upcalls (RW) 

The upcall detector demonstrated a capability for high recall to extract calls on a subset 

of data where positive presence was already established. This configuration is appropriate for 

the intended application, as NPRW calling is infrequent and the species is highly endangered. 

This allowed the detector to be useful for analysis of upcall calling rates and patterning on all 

previously analyzed data. The precision statistic at the currently specified recall was tolerable 

for this application considering there are few data hours after subsampling. However when 

applied to full mooring-year datasets for analysis the high false positive rate would become 

unmanageable (Table 2). Based on the skew of the precision-recall curve the detector at 

present would demonstrate better performance for full mooring application at higher 

precision analysis. Given the rarity of the species and the low calling rate, testing would need 

to be performed to ensure that bouts are not being missed at lower recall for a full mooring-

year deployment.   

To further develop the upcall detector for high recall application, it will be necessary to 

expand the capability of the defined event detector to enable a higher recall ceiling (recall 

ceiling refers to the number of true positives that are initially identified by the defined event 

detector before the classifier stage). This would have the trade-off of increasing the amount of 

false positive detections to process during feature extraction and decreasing computational 

efficiency. Once a recall ceiling is reached, it will be worth reexamining the recall statistic itself 

to make sure that it properly qualifies the success of the analysis. One such strategy to better 

analyze performance may be to adjust definitions of true calls to exclude lower quality calls 

from the ground truth data which are less important to include than high quality calls, but at19



present contribute equally to the recall statistic. This will have the effect of increasing the recall 

statistic, as INSTINCT will preferentially return high quality calls. Alternatively, instead of 

throwing out low quality calls, a weighted recall statistic can be used to favor inclusion of higher 

quality upcalls for a similar effect. Further, it will be beneficial to define a high recall ceiling as a 

ceiling that is expected between two human analysts instead of an arbitrary (and typically 

unachievable in any case) target of 1.0. An experiment could be designed to compare call type 

boxing between two experienced observers, which would give a more realistic target for recall 

(as in Baumgartner et al. 2011). Recall could then be reported as a % of this attainable target 

statistic, allowing for more room to improve analysis precision while keeping recall high. While 

these changes would largely be semantic, they would help direct the analysis to its target goals 

while keeping the detector function closer to optimal.  

Application of this detector to full mooring deployment data would also require 

expansion of the ground truth data to include biotic noise factors. This version of the detector 

would need to identify all upsweeps in the NPRW frequency range, not just NPRW upcalls, 

which is a category that would be expanded to include humpback whale and bowhead whale 

calls, which are considered to be indistinguishable without context. Context can be valuable to 

improve the performance of detection and classification tasks (Roch et al. 2018). Future work 

for NPRW upcall detection could be a multiple stage process, which would involve extracting 

upsweeps with INSTINCT, and using a convolutional neural network (CNN) or other deep 

learning method for species classification using contextual features sourced from outside of the 

call boundaries. This would be an innovative approach that combines INSTINCT for fast 

detection of call types, and leverages the ability of CNNs to learn complicated patterns in image 

data.  

North Pacific right whale gunshots (GS) 

Despite good classifier performance at high precision, the recall ceiling for the gunshot 

detector was lower as many low quality true positive calls were screened out during the 

defined event detection step. Defined event detection requires a set of rules to be applied to 

BLED minidetections to produce a detection, and these rules must encompass the variation in a 

call type to achieve accurate detection. Gunshot defined event detection is a difficult problem 
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over the range of variation, as lower quality/more dispersed received gunshots resemble tonal 

sweeps with a longer duration, while higher quality/less dispersed received gunshots are 

broadband with a very short duration. To achieve sufficient detector precision for gunshots, the 

detector recall for very low quality (high dispersion) calls was reduced, favoring the higher 

quality gunshots. This had the overall effect of lowering the ceiling for a high recall gunshot 

analysis. However, this approach had the benefit of tailoring the detector to the more 

important high quality signals and increasing performance on this more relevant class of 

gunshots.  

Additionally, minimizing multibox % was favored over balancing overbox % and multibox 

%. Gunshots can be tightly coupled in ‘doublet gunshot’ patterns (Crance et al. 2019) or can 

have a long received duration due to modal dispersion. These tendencies made it difficult to 

define gunshot duration, resulting in a large overbox % if the detector was configured to 

appropriately bound highly dispersed gunshots, or a large multibox % if the detector was 

configured to appropriately bound doublet gunshot. Although identifying doublet gunshots can 

be helpful for future behavior analysis, it was determined that the more relevant need in the 

short term was a detector that could reliably bound single gunshots across a high degree of 

received duration variability. It is also possible to address high overbox % using another round 

of classification to separate doublet gunshots from single gunshots should the need to make 

this distinction arise in the future.    

Minke boing calls (BN) 

The minke boing detector was unrefined compared to the other detectors as it was 

designed to enable a calculation of pulse repetition rate from previously extracted minke boing 

calls. The BN detector had excellent precision/recall performance metrics compared with the 

other detectors. This success is likely due to the relatively low rate of competing noise present 

in the ground truth data at the higher frequency band of these calls. The high importance of 

pixel count features reflects the defining attribute of the harmonic nature of these calls. Instead 

of occurring as a single pitch modulated feature, the pulsive nature of these calls leads to their 

appearance on spectrograms as frequency modulated harmonics (Watkins 1968), and so their 
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identification relies on the association of the shape and area of these components (Appendix 

section A). The ability of the INSTINCT classifier to identify these characteristics reflects its 

versatility when applied to call types that cannot be defined by a single frequency modulated 

shape object. This is in contrast with existing pitch tracking methods (e.g., LFDCS, ROCCA) which 

would be unable to account for these associations. High variability seen in the by-data-segment 

performance metrics hints at an imbalance in the ground truth data, which is largely dominated 

by 2 years at mooring CL1 with particularly high calling activity. This is by necessity, given that 

the selected data segments were a comprehensive sampling of minke boing calls in the 

manually analyzed data. However, because of this data imbalance, it is difficult to predict the 

success of this detector when applied to other regions, years, and seasons. Any future analyzed 

data that are found to contain minke whale boing calls (via SoundChecker, data exploration 

with INSTINCT, or data from outside the lab) can be included in training to increase the balance 

and generalization of the detector ground truth to whatever domain is desired for its 

application.  

Fin whale (FD) 

 The fin whale detector achieved generalization to call types sufficient to describe 

seasonal fin whale presence in the Bering and Chukchi seas. Although there was notable 

undersensitivity in Unimak Pass (BS4), the calibration protocol allowed for a compromise in 

sensitivity such that seasonal trends are best preserved between all considered locations. This 

protocol will allow for a rapid semi-automated analysis of the entire MML archival data in the 

Alaska region, allowing us to build a robust dataset of annual fin whale presence throughout a 

wide spatial range. These data will inform our knowledge of fin whale spatiotemporal 

distribution in a region where they have received limited study.  

In addition to insights on fin whale acoustic presence in this region, the FD workflow has 

provided a blueprint for future model creation, calibration, and deployment with INSTINCT. 

One of the biggest challenges in training and assessing performance in the FN and BB detectors 

was the lack of robust training data, given that the low frequency band containing fins was 

among the least analyzed. In future model creation for thoroughly analyzed call types, more 
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spatial and temporal coverage will be available to better assess these differences while creating 

the model, which should diminish the need for calibration and manual verification to alleviate 

sensitivity differences in the model. Time spent training and assessing model performance in 

different environments is valuable to prevent computationally expensive redeployment down 

the road if performance is later found to be inadequate.  

Learning Curve 

Similar to the recall/precision tradeoff inherent to detection methods, there is a human 

effort versus detector generalization tradeoff. Research into the appropriate amount of data to 

generalize a detector to the relevant system is essential to navigate this tradeoff (Beery et al. 

2018). It is difficult to know in the moment the appropriate amount of data segments that 

should be included for a new detector given the sometimes high degree of variability in 

performance between individual data segments. Therefore, exploring the average effect of 

adding data segments to training data are valuable to better inform this decision in practice.  

Both the upcall and gunshot learning curves demonstrated a reduction in the precision 

differential with the addition of more data segments. The more gradual trajectory of the RW 

learning curve suggests those data segments generate steadily improving but similar models, 

while the more dramatic GS learning curve suggests models generated from fewer data 

segments do not necessarily transfer well when applied to other data segments. However, once 

a few data segments are included, the model produces consistent results (evidenced by the 

much reduced lower bound by n = 3), indicating commonalities are found between data 

segments with apparent high variability in call characteristics. The upcall results indicates that it 

may be possible to further increase the upcall detector performance by adding data segments 

until a more consistent plateau is reached, whereas the gunshot detector seems to have 

reached stable performance, indicating that more data may have been provided than optimal 

for efficiency in labeling effort. This learning curve may be useful to repeat as a tool in detector 

construction to determine whether performance has stabilized with ground truth effort or if 

more data may be beneficial to achieve generalization.  
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Compute 

Processing speed varies with the amount of putative detections to process, making the 

FD workflow extremely computationally intensive due to the amount of true positives in the 

data.  Additionally, detectors which demonstrate high false positive/hour metrics should also 

be expected to be computationally intensive. Sound file size was not observed to be a 

bottleneck on run time based on more limited experiments with higher frequency call types, 

although the most extensive profiling comes from data that were decimated down to very low 

frequency range (maximum 64Hz). Attention should be paid to other bottlenecks that may 

surface as INSTINCT is applied to larger file sizes at an equivalent scale.  

Conclusions 

INSTINCT has introduced a new possibility for automated detection and classification of 

marine mammal call types in U.S. Arctic passive acoustic data. In addition to demonstrating 

excellent performance on challenging datasets, INSTINCT provides a platform to develop and 

assess new artificial intelligence/machine learning methods for the advancement of detection 

capability in an increasingly automated scientific landscape. The transferability of INSTINCT 

provides a powerful out of the box approach for new analyses, and the scaling potential allows 

for application of analyses to large spatiotemporal ranges. In addition to the ability for 

INSTINCT to inform animal presence on new or unanalyzed data, it can be applied for behavior 

analysis of call types on new data or data previously labeled with SoundChecker. INSTINCT has 

enabled new analysis potential for MML and could become a go-to tool for call type analysis in 

the animal bioacoustics community.  
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Table 1. -- Definitions for relevant performance statistics. TP = True Positive. FN = False 
Negative. FP = False Positive. AUC = Area Under Curve. ROC = Receiver Operating 
Characteristic. PR = Precision-Recall.  

Metric Definition Specification- 
dependent 

Recall =TP/(TP+FN) ; hit rate of the detector for all true calls. Y 

Precision =TP/(TP+FP) ; Accuracy of returned detections Y 

Multibox % Percent of duplicate returned detections within a single 
ground truth time frequency box 

Y 

Overbox % Percent of duplicate ground truth frequency boxes within a 
single returned detection 

Y 

AUC score Integral of ROC; total detector performance   N 

Average precision Integral of PR curve; total detector performance  N 

Minimum distance 
recall  

Recall at the point along the ROC or PR curve corresponding 
to the minimum distance to a perfect detector 

N 

Minimum distance 
precision  

Precision at the point along the ROC or PR curve 
corresponding to the minimum distance to a perfect 

detector 

N 

Table 2. -- Ground truth effort for each detector. See text for column definitions. 

Detector Data 
segments 

Unique data 
segments 

Mean data 
segment effort 

(hr±SD) 

Total 
effort 
(hr) 

Total 
calls Calls/hr 

RW 12 12 7.6 ± 4.5 91.4 5793 63.4 

GS 11 9 4.6 ± 3.1 50.1 9289 185.3 

BN 12 9 2.1 ± 2.8 24.6 7347 299.0 

FN 6 6 15.2 ± 5.0 90.9 9962 109.6 

BB 9 8 7.1 ± 3.7 63.8 13539 212.3 
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Table 3. -- Training data characteristics for each detector. Tuning refers to whether the detector 
was designed for high recall or high precision. Per hour refers to data hour. 
 

Detector Tuning  Training data 
type  

 True 
detections/hr 

Missed 
detections/hr 

False 
detections/hr 

RW Recall  Subset  56.5 6.8 103.9 

GS Recall  Subset  161.41 23.93 105.25 

BN Precision  Subset  198.7 100.4 8.1 

FN Precision  Raw  55.4 55.2 2.7 

BB Precision  Raw  103.1 109.1 3.0 

 

 
 

Table 4. -- Performance statistics of defined event detector, classifier, and combined detector 
for North Pacific right whale upcalls (RW). Variability indicated by standard deviation. 
Column definitions in text.  

 

Stage Recall Precision Multibox 
% 

Overbox 
% 

Min. dist. 
recall 

Min. dist. 
precision 

Event 
Detector 

0.94 0.11 0.42 0.07 
  

Classifier 0.95 0.35 
  

0.90 0.83 

Overall 0.89 0.35 0.31 0.07 0.73 0.81 

Overall, by 
data segment  

0.89 ± 
0.04 

0.35 ± 
0.08 

0.28 ± 
0.24 

0.06 ± 
0.09 
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Table 5. -- Performance statistics of defined event detector, classifier, and combined detector 
for North Pacific right whale gunshots (GS). Variability indicated by standard 
deviation. Column definitions in text. 
 

Stage Recall Precision Multibox 
% 

Overbox 
% 

Min. dist. 
recall 

Min. dist. 
precision 

Event Detector 0.82 0.45 1.4 7.0 
  

Classifier 0.95 0.73 
  

0.88 0.89 

Overall 0.78 0.73 1.0 7.4 0.75 0.82 

Overall, by 
data segment 

0.76 ± 
0.16 

0.72 ± 
0.09 

1.0 ± 1.0 5.7 ± 5.4   

 

 

 

Table 6. -- Performance statistics of defined event detector, classifier, and combined detector 
for minke whale boing calls (BN). Variability indicated by standard deviation. Column 
definitions in text. 
 

Stage Recall Precision Multibox 
% 

Overbox 
% 

Min. dist. 
recall 

Min. dist. 
precision 

Event Detector 0.91 0.42 5.80 7.05 
  

Classifier 0.95 0.83 
  

0.92 0.94 

Overall 0.88 0.83 4.00 7.05 0.83 0.90 

Overall, by data 
segment  

0.92 ± 
0.06 

0.57 ± 0.27 2.10 ± 
2.32 

7.25 ± 
9.34 
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Table 7. -- Performance statistics of defined event detector, classifier, and combined detector 
for fin whale C calls (FN). Variability indicated by standard deviation. Column 
definitions in text. 

Stage Recall Precision Multibox 
% 

Overbox 
% 

Min. dist. 
recall 

Min. dist. 
precision 

Event Detector 0.93 0.13 14.05 1.62 

Classifier 0.62 0.95 0.91 0.93 

Overall 0.50 0.95 1.70 1.41 0.79 0.83 

Overall, by 
data segment 

0.46 ± 
0.11 

0.96 ± 
0.03 

2.52 ± 
3.52 

0.65 ± 
1.20 

Table 8. -- Performance statistics of defined event detector, classifier, and combined detector 
for fin whale backbeat calls (BB). Variability indicated by standard deviation. Column 
definitions in text. 

Stage Recall Precision Multibox 
% 

Overbox 
% 

Min. dist. 
recall 

Min. dist. 
precision 

Event Detector 0.80 0.28 4.32 0.88 

Classifier 0.59 0.97 0.91 0.90 

Overall 0.49 0.97 0.55 0.67 0.68 0.77 

Overall, by 
data segment 

0.44 ± 
0.24 

0.97 ± 
0.02 

0.22 ± 
0.32 

0.53 ± 
0.57 
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Table 9. -- Calibration statistics for each FD test mooring. All regressions returned p-values of  
< 0.01. 

Deployment R2 # days over-
sensitive 

# days under- 
sensitive 

% days sampled in 
training data 

2012 M2a 1.00 44 54 4.2 

2012 M2b 0.95 89 92 <1 

2012 PH1 0.96 61 9 0 

2013 PH1 0.93 83 21 2.1 

2012 CL1 0.97 43 4 3.5 

2013 CL1 0.99 25 30 0 

2012 M8 0.99 58 92 <1 

2018 BS4 0.89 2 143 0 

Total 0.98 405 302 1.3 
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Figure 1. -- Flow chart of INSTINCT design phase. Square boxes indicate a process, and circles 
indicate a result. Green and yellow colors indicate manual processes and manually 
obtained modules, respectively. SOI = signal of interest.  

Figure 2. -- Flow chart of INSTINCT training phase. Square boxes indicate a process, circles 
indicate a module, diamonds represent a decision, and rounded boxes represent an 
output or initialization. Orange indicates an initialization, gray indicates an 
automatic process, yellow indicates a manually obtained module, blue indicates an 
automated result or module, and green indicates a manual decision.  
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Figure 3. -- Flow chart of INSTINCT deployment phase. Square boxes indicate a process, circles 
indicate a module, and rounded boxes represent an output or initialization. Orange 
indicates an initialization, gray indicates an automatic process, yellow indicates a 
manually obtained module, and blue indicates an automated result or module. 

 

Figure 4. -- (A) Partial Central Processing Unit (CPU) and (B) memory profiling of INSTINCT 
application to a full year dataset on an Alaska Fisheries Science Center (AFSC) virtual 
machine (16 cores CPU, 128GB memory). Stage numbers correspond to the first 
through third parallelized stages of INSTINCT: Energy detection (1), defined event 
detection algorithm application (2), and feature extraction (3). Not shown is model 
generation (4). Note the high CPU utilization and low memory utilization, indicating 
the process would benefit from additional CPU cores (M. Brown, AFSC-OFIS, pers. 
comm. 26 December 2019).  

% 

KB 

1 

2 3 

1 
2 

3 

A 

B 

% 

37



Figure 5. -- Results for North Pacific right whale upcall (RW) detector. (A) Locations where 
ground truth data segments were sampled. (B) Days in which ground truth data 
segments were sampled. (C) Receiver operating characteristic curve for upcall 
classifier. AUC = Area Under the Curve. (D) Precision-recall curve for entire upcall 
detector. (E) Top five important features for the classifier as determined by mean 
decrease in Gini coefficient (see text for definitions).  
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Figure 6. -- Results for North Pacific right whale gunshot (GS) detector. (A) Locations where 
ground truth data segments were sampled. (B) Days in which ground truth data 
segments were sampled. (C) Receiver operating characteristic curve for gunshot 
classifier. AUC = Area Under the Curve. (D) Precision-recall curve for entire gunshot 
detector. (E) Top five important features for the classifier as determined by mean 
decrease in Gini coefficient (see text for definitions).  
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Figure 7. -- Results for minke whale boing call (BN) detector. (A) Locations where ground truth 
data segments were sampled. (B) Days in which ground truth data segments were 
sampled. (C) Receiver operating characteristic curve for boing classifier. AUC = Area 
Under the Curve. (D) Precision-recall curve for entire boing detector. (E) Top five 
important features in the model, as determined by mean decrease in Gini coefficient 
(see text for definitions). 
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Figure 8. -- Results for fin whale C call (FN) detector. (A) Locations where ground truth data 
segments were sampled. (B) Days in which ground truth data segments were 
sampled. (C) Receiver operating characteristic curve for C call classifier. AUC = Area 
Under the Curve. (D) Precision-recall curve for entire C call detector. (E) Top five 
important features in the model, as determined by mean decrease in gini coefficient 
(see text for definitions). 
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Figure 9. -- Results for fin whale backbeat call (BB) detector. (A) Locations where ground truth 
data segments were sampled. (B) Days in which ground truth data segments were 
sampled. (C) Receiver operating characteristic curve for C call classifier. AUC = Area 
Under the Curve. (D) Precision-recall curve for entire C call detector. (E) Top five 
important features in the model, as determined by mean decrease in Gini coefficient 
(see text for definitions). 

Figure 10. -- Correlation mean and standard deviation of correlation R scores for the FD 
calibration. 
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Figure 11. -- Daily % presence (% 5-minute bins/day with fin whale calls detected) for INSTINCT 
(black line) and SoundChecker (dashed red line) over the 2012 M2a mooring 
deployment. x-axis in month-years.  

Figure 12. -- Daily % presence (% 5-minute bins/day with fin whale calls detected) for INSTINCT 
(black line) and SoundChecker (dashed red line) over the 2012 CL1 mooring 
deployment. x-axis in month-years. 
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Figure 13. -- Daily % presence (% 5-minute bins/day with fin whale calls detected) for INSTINCT 
(black line) and SoundChecker (dashed red line) over the 2018 BS4 mooring 
deployment. x-axis in month-years. 
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Figure 14. -- Difference in daily % presence (% 5-minute bins/day with fin whale calls detected) 
for eight test moorings for FD calibration. Negative values indicates detector 
under-sensitivity, positive values indicate detector over-sensitivity. Days used for 
ground truth for either FN or BB detectors are represented by brown rectangles. 
Counts represents the total call counts per day. Both daily % presence difference 
and counts are processed with a cubic smoothing spline with a smoothing 
parameter of 0.75. Note that color scale for counts varies among plots.  
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Figure 15. -- Learning curve of upcalls (left) and gunshots (right). The x-axis indicates the 
number of ground truth data segments used to generate the classifier for the 
given step, and the y-axis indicates the precision differential between the current 
classifier on its own ground truth and the next data segment.   
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Appendix 

This appendix contains supporting details on the INSTINCT defined event detectors (A), 

classifier (B), and the Hough transform during feature extraction (C). It also contains 

information on the mooring deployments used in this study (D; Appendix Table 1; Appendix Fig. 

9).  

A: Defined event detector 

Event detectors attempt to identify events based on received values that exceed a 

calculation of noise by a defined threshold (Erbe and King 2008). Spectrogram based event 

detectors (BLEDs) use amplitude values within a frequency band to distinguish background 

noise from events based on user parameters (Bioacoustics Research Program 2017). Each BLED 

is a nonspecific detector, which will be triggered by eligible events of specified signal-to noise 

ratio. However, making multiple BLEDs in series allows for rule based detection of events by 

comparing detections from different bands as an aggregate. This permits for discrimination of 

unlikely signals while retaining the computational efficiency of the event detector. This process 

is here called ‘defined event detection’. Defined event detectors are specific to the attributes of 

each call type. They are constructed manually in an iterative process that attempts to maximize 

recall while keeping precision at manageable levels (low precision is tolerable during this stage, 

under the expectation that most false positives will be filtered out via classification). Defined 

event detection allows for a computationally light detection round using any definable time-

frequency tendencies of the general call. Four defined event detectors were designed, 

corresponding to the RW, GS, BN, and FN INSTINCT detectors. Of these, two defined event 

detectors used algorithms that relied only on FM properties of the general signal (RW and FN), 

one used an algorithm that relied only on temporal association (BN), and one used an algorithm 

which dynamically incorporated both methods (GS). Of the five INSTINCT detectors presented, 

only the BB detector lacked a defined event detector due to inconsistent frequency modulation 

of the call type. Because of this, a single event detector was used for BB. In this appendix 

qualitative descriptions for defined event detection methods are presented.     
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The upcall (RW) defined event detector uses a custom algorithm to search for ascending 

sequences of ‘minidetections’ (individual detections within a BLED) within groups of 

minidetections designated by time similarity (Appendix Fig. 1). Time similarity refers to 

grouping by a fixed time interval, where a consecutive minidetection that falls outside of this 

interval is assigned to a new group. At current parameters, ‘runs’ of at least three 

minidetections are required for these groups to be considered a valid detection. All qualified 

runs are compared by length to determine the single best run, the minidetections of which are 

combined to define the putative detection. If lengths of multiple runs are the same, the 

following tie-breakers are used: first, the smallest maximum frequency jump in frequency range 

in between any two minidetections in the run, second, the fewest interruptions in the run 

(number of times in the run that consecutive streak is broken). By rejecting smaller runs, 

harmonics are designed to be disqualified as detections, and the fundamental frequency of the 

call is retained as the putative detection (Appendix Fig. 2).  

The gunshot defined event detector custom algorithm searches for runs of stacked 

minidetections higher in the expected frequency range, and stacked or descending runs of 

minidetections lower in the expected frequency range (Appendix Fig. 3). The algorithm changes 

tolerance for accepting descending minidetections further with reduced frequency to account 

for the tendency of propagation to induce longer duration multipath arrival in the lower 

frequencies. These parameters were designed to account for the range of distortion present in 

signals with high or low dispersion, and validated with iterative performance testing and 

qualitative evaluation of performance on application to data segments. Stacked minidetections 

optionally transitioning into downsweeps are queried in these groups, and runs which fit the 

minimum four minidetection distance criteria are combined to be retained as the putative 

detection.  

The boing defined event detector custom algorithm searches for stacked minidetections 

within groups (temporal similarity). At current parameters, two or more stacked minidetections 

are necessary to constitute a detection (Appendix Fig. 4). The fin whale C call defined event 

detector custom algorithm searches for downsweeps within groups. At current parameters, it 
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returns any downsweeps within a group provided they have at least four minidetections in the 

run (Appendix Fig. 5).  

B: Classifier 

INSTINCT generates bootstrapped binary random forest models to perform probabilistic 

classification of positive and negative signals based on ground truth data. The ground truth data 

are subset n-fold on a randomly selected three quarter partition of the data which then are 

rebalanced to equal positive/negative ratio by randomly excluding excess items from the larger 

class (typically the negative class) to produce n iterations of training datasets. Random forest 

models are generated for each training dataset with R package ‘randomForest’ (Liaw and 

Weiner 2002) with hyperparameter mtry = 11 and ntree = 500. Hyperparameter values are 

fixed as they have a small observed effect on detector performance and perform well between 

applications at these parameters. These models are applied differently depending on whether 

INSTINCT is being applied for performance assessment or deployed on novel data. When 

applied for performance assessment, these models are applied to the one quarter 

corresponding test data held out from the training partition for each iteration. Probabilities 

from each instance in the test data are recorded in a matrix of n columns, and rows equal to 

total items in the ground truth, resulting in each item having a probability vector of variable 

length depending on the number of times it was randomly selected in test data over n trials. 

These vectors are averaged, resulting in a cross validated probability for each instance in the 

training data. When applied to novel data, these models are generated in the same fashion, but 

instead are applied to each item of novel data resulting in probability vectors of length n that 

are averaged to produce a final probability. The training data partition was set to 75% for all 

classifiers after limited experimentation, but an optimal partition size for each detector would 

likely vary depending on species, energy detector configuration, soundscape characteristics, 

and training data available.  

One notable aspect of INSTINCT is that due to the random sampling step during training, 

and the potential for any given instance to be underrepresented in the test data, detector 

performance is not deterministic and output probabilities may vary slightly in each application. 

Despite this, total performance statistics are very consistent between applications. If 
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repeatability is desired, the random sampling can be kept consistent between applications 

using the ‘set.seed’ function in R. 

C: Hough line features 

At present, there are 135 features extracted for use in the classifier. Of these, Hough 

line features are notably informative, especially in the FM signals. The Hough transform is a 

popular method in computer vision, allowing for detection of simple shapes (straight lines, 

circles, ellipses, etc.) within noisy or imperfect images, often in combination with edge 

extraction to produce the boundaries of more complex shapes (Collado et al. 2006, Jahan and 

Singh 2018). The Hough transform uses an accumulator matrix that accumulates votes for 

potential lines present in the image for each eligible ρ and Θ value for the image (Duda and 

Hart 1972). Votes for each ρ/Θ combination represent the line ‘score’ (Appendix Fig. 6).  

In the present application, Hough transformation was used to identify straight lines 

from each putative detection during feature extraction (Appendix Fig. 7). The attributes from 

the single best line from the Hough transform were extracted as features. These features 

corresponded to the ρ, Θ, slope (when finite), y-intercept (when finite) and score of the single 

best Hough line (Appendix Fig. 8). Features were also extracted from a subset of the top 30% of 

high scoring lines. These features corresponded to the mean, median, and standard deviation 

of ρ, Θ, slope (when finite), y-intercept (when finite) and score from lines in this pool. 

Additionally, these same Hough transform values were extracted for the highest scoring line 

from each independent shape object in the binary spectrogram, and the mean, median, and 

standard deviation were computed as additional fragmentation resistant features. 

Fragmentation refers to the splitting of calls into multiple shape objects that can occur during 

spectrogram thresholding in low signal-to-noise ratio conditions. Aside from artifacts from the 

thresholding process, fragmentation can occur from environmental effects on received signals. 

The Hough features are included with the other handcrafted extracted features, and used to 

inform the classifier. As a proxy for slope in noisy images, the Hough line features were 

particularly informative in the very consistently frequency modulated RW and FN call types. For 

gunshots, which are less consistently FM, Hough features related to slope nevertheless were 
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the top three most informative features. Even BB, which are not thought to have consistent FM, 

had one Hough feature in the top five informative features. Following our observations of BB 

characteristics, this feature represented the strength of the line, not a particular slope 

measurement. Only BN did not have Hough features within the top five for feature importance.  

The consistent power of the Hough transform to inform the classifier, particularly for 

FM signals, indicates its strength for classification of call types. The current implementation is 

only used to find straight lines in images, but this algorithm can be applied to find other 

consistent shapes which may be meaningful for some stereotyped signals. To our knowledge, 

there is no literature that uses Hough lines as noise tolerant features in marine mammal 

acoustics, and the success in this application may be transferable to improve the performance 

of other model designs. 

Appendix Figure 1. -- Three examples of the upcall defined event detector on true positive calls. 
True positive calls shaded with transparent orange box. 
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Appendix Figure 2. -- RW defined event detector algorithm. 
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Appendix Figure 3. -- Three examples of the gunshot defined event detector on true positive 
calls. True positive calls shaded with transparent orange box. 

Appendix Figure 4. -- Three examples of the boing defined event detector on true positive calls. 
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Appendix Figure 5. -- Three examples of the fin whale C call defined event detector on true 
positive calls. True positive calls shaded with transparent orange box. 

Appendix Figure 6. -- Process of Hough line detection (from Van der Walt et al. 2014). In the 
Hough transform step, y-axis is equivalent to ρ, and x-axis is equivalent to 
Θ. 
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Appendix Figure 7. -- True positive and false positive spectrograms (top) and binarized 
spectrograms with superimposed top scoring Hough lines (bottom) for all 
INSTINCT detectors. Examples randomly selected from each class.  
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Appendix Figure 8. -- (A) Spectrogram of a true positive right whale upcall from training data 
with superimposed detection, viewed in Raven 1.5. (B) Spectrogram tile of 
the same call rendered during feature extraction. (C) Binarized 
spectrogram with top scoring Hough lines (green) superimposed. Colored 
lines indicate the best line (red), and lines which equal the values for the 
median of each parameter.   

Hz 

B 
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Appendix Table 1. --Mooring deployment metadata. 

RW ground truth: AW12_AU_BS2, AW14_AU_BS2, AW14_AU_BS3, AW15_AU_BS2, AL16_AU_BS1, 
BS13_AU_04, BS14_AU_04, BS15_AU_02a, BS15_AU_02b, BS15_AU_04, BS16_AU_02a, BS16_AU_05 

GS ground truth: AW12_AU_BS3, AW14_AU_BS3, AW15_AU_BS2, AW15_AU_BS3, AL16_AU_BS3, 
BS12_AU_02a, BS12_AU_02b, BS13_AU_04, BS14_AU_04 

BN ground truth: CZ11_AU_IC1c, AW12_AU_KZ1, AW12_AU_CL1, AW14_AU_NM1, AW13_AU_PH1, 
AW14_AU_NM1, AW14_AU_PH1, AL16_AU_CC2, AL17_AU_CC2 

FN ground truth: AW13_AU_PH1, AW15_AU_NM1, AW15_AU_CL1, BS12_AU_02b, BS12_AU_08a 

BB ground truth: AW12_AU_CL1, AW13_AU_PH1, AW15_AU_CL1, AW15_AU_NM1, BS12_AU_02a, 
BS12_AU_02b, BS12_AU_08a, RW09_EA_01 
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D: Organized list of mooring deployments used 



Appendix Figure 9. -- Locations of mooring deployments. 
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